Time Series Analysis

Do you need to model a process that has a trend or seasonal variation? SPC for Excel contains the following basic time series analysis:

Linear

Quadratic

Exponential Growth

Single Exponential Growth

Double Exponential Growth

Winter's Method

Moving Average

time series analysis double chart

See What Time Series analysis in SPC for Excel Can Do!

Why Use Time Series Analysis in SPC for Excel?

SPC for Excel easily performs time series analysis using one of the above techniques. A time series is a series of data points in time order, taken at successive equally spaced points in time, such as daily, yearly, etc. A time series is plotted over time as a run chart.  There are potentially three components in a time series analysis: level, trend and seasonal.

One use of time series analysis is to forecast future values based on history.

Another objective is to find patterns in the data that can be used to extrapolate those patterns into the future.

Get These Time Series Analysis Features

Compare models using mean absolute percentage error (MAPE), mean absolute deviation (MAD), or mean squared deviation (MSD)

Forecast future points

Includes prediction limits for future points

Enter values for level, trend or forecast weights or let SPC for Excel find them by minimizing the error

From Our Satisfied Customers

Join those in over 80 countries using SPC for Excel !